LITHIUM SALT LAKES —
POWERING THE FUTURE
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~ Salt lakes & their mineral wealth

* Salt lakes are an important source of lithium (batteries), potassium
(fertiliser) and boron (flux, fibre glass etc)

* Lakes include permanent water bodies i.e. Dead Sea, Great Salt Lake (USA)
* But most commonly seasonally flooded dry lakes

e Andes of Argentina, Chile, Bolivia; Nevada and Utah USA; Qinghai
Basin NW China; Central Australia

e Referred to as Playas, Salars, Salt Lakes, Dry lakes etc
* Global distribution, related to geology and climate

® Minerals and brine chemistry different from major marine evaporite
deposits producing potash in Canada, USA, Europe, Africa
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Global distribution — potash brine

@® Potash deposits
O Potash salt lakes
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Lithium uses

Key demand drivers are:

® Electronic devices

® Electric cars

® Electricity storage —i.e. Tesla
Powerwall battery storage

® Glass production

e Other industrial applications

Use of battery grade lithium in
portable electronic devices has
grown by ~20% annually since 2000
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" Supply challenges

One of few commodities with

positive pricing expectations

Highly concentrated supply chain
Owned by large chemical companies
Large industrial end users, LG Chem,
Foxconn, Boston Power, Tesla, BYD
Limited economic deposits
Regulatory & environmental
constraints in Chile

Limited supply supporting prices
Attracting new aspiring hard rock
and clay resource developers
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~ Salt lake types

* Houston (2011) divided salt lakes into two broad types
e Mature — dominated by evaporites (halite, gypsum)
e Immature — dominated by clay, silt, sand/gravel

* 1%t generation lithium and potash developments dominantly mature salt
lakes (pre-2000)

» 2"d/new generation of salt lake development mostly immature salt lakes
(2009 onward)

* Sedimentation controlled by:

e Climate — dry periods facilitate evaporite deposition, wet periods
coarser sediment deposition

e Tectonics — changing the geometry of depressions, uplifting mountains
for erosion
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Brine deposit key ingredients

Lithium source (acid volcanic rocks - Miocene & younger in Lithium Triangle;
volcanic glasses)

e Hot springs associated with volcanos or leaching of volcanic rocks.
Associated boron and potassium

e Chemical ratios important for processing — Low Mg/Li, low SO4/Li

Potassium source — weathering of micas and feldspars. Deposits more
widespread than lithium, as sources more varied

Tectonic/topographic control
e Andes - Internal drainage, thick sediments in tectonic depressions

e Central Australia - Lower topography, potash deposits in broad
depressions and channels

Arid climate

Evaporation >> seasonal rainfall, evaporative concentration generating
hypersaline brines
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Salt lake geology

e Halite units, 10’s to hundreds of metres thick.
» Halite porosity generally decreases with depth,
 Good aquifers near surface, with primary and secondary fracture
porosity/permeability
* (Basal) coarse gravel and sand in some Andean basins — prime
aquifers
e Sourced from alluvial fans, wet climatic periods

* Upper fine grained silt and clay sequences, often with organic rich
silts

e Essentially leaky aquitards
¢ Sedimentation reflects climatic situation, water balance and tectonics
* Upper Tertiary felsic volcanics/hot springs in the catchment
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- Salt layers — at surface or depth

Salt crusts vary from zero thickness to hundreds of metres thlck reflectlng
climatic conditions, hydrology and the salt balance in each individual basin

Salt lakes dominated by halite have very different hydraullc propertles to
those dominated by clastic material i

The halite nucleus is typically thicker than at the
lake margins




Andean basin geology
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Source Houston, 2011
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Immature salt lakes example |l
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» Economic Li & K grades,

» Minimal surface halite

» Extensive halite at depth

» Basal sand sequence
underlying fine clastics

» Narrower basin, with
implications for pumping

Sources Orocobre 2013, Lithium Americas, 2012




/ Immature salt Iake examples III
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Rainfall and evaporation

Major rainfall deficit necessary, overall rainfall <~250 mm

Uplift of the Puna Plateau on the border of Argentina, Bolivia
& Chile created a rain shadow and arid to hyperarid
environment

e This area receives summer storms from Brazilian jungle.

e Drier to the SW into Chile, the Atacama Desert/Salar de
Atacama

e Central Australian lakes annual rainfall from major storms
moving inland from NW Australian coast

Surface and groundwater inflows to salt lakes dilute (i.e. 3
mg/| Li)

Inflows evaporate around the margins of the lakes, with
increasing concentrations — 600 mg/I Li typical, 6,000 + mg/I| K



Conceptual model — volcanic basin
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MECHANISMS FOR CONCENTRATING LITHIUM IN BRINES:

1. Evaporation

2. Hydrothermal fluids react with aquifer and liberate Li

MECHANISMS FOR REMOVING LITHIUM FROM BRINE POOL:

1. Brine spills out of basin

2. Brine leaks out from bottom of basin

3.Li minerals crystallize from aturated brine
4, Li clays crystallize from hydiothermal fluids
5. Li brines trapped influid inclusions in halite
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Exploration

Pit sampling provides information on Li, K grades but
often high surface grades do not continue at depth

Drilling required to determine average grades and to
determine stratigraphy

Depth sampling of brines to assess variation
Mapping the extent of the brine body
Analysis of cores for porosity and permeabillity

Pump testing to assess longer term performance,
drawdown and grade
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Geophysics — looking deeper

Salt lakes can be large, > 10 to 10’s km across

Need thick sequences of sediments or large surface
areas for economic volumes of brine

Fault-controlled blocks often present beneath lakes

Sediments are low density clays, silts, sands compared to
basement rocks, gravel in some basins

Gravity can map density contrast with basement

Seismic can detect basement contact and some layering
in the sediments

Electrical geophysics detects the limits of brine bodies,
and some basement topography



Drilling — Quality Vs Cost Vs Time

Salt lakes often soft and require embankment construction
or helicopter transport

Objectives — Information on aquifers, aquitards, samples
for porosity test work, brine samples

Diamond — Generally quality sample, recovery variable
Sonic — excellent sample, extremely expensive

Aircore — rapid drilling, cheap, disturbed lithology
samples, less control on stratigraphy

Rotary — for installation of bores, with use of muds to
support hole walls in unconsolidated sediments



~ Drilling methods
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Physical sample test work

Porosity & Permeability

Core samples tested for total and effective porosity and
specific yield
Specific yield — how do you actually measure it? Different
labs, different methods.

e Using a centrifuge to simulate free draining of pores

Permeability sampling of cores to compare with pump
testing

e Need to consider potential scale factor variation between
core and pump tests
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Well sealed core samples for testing

* Liquid resaturation — effective
porosity measurements

* Helium injection — used for effective
porosity measurements

» Specific yield measurements using a
low speed centrifuge technique to
simulate the effect of pumping



orosity relationships
Pt (total porosity) > Pe (effective porosity) > SY (specific yield)

Fine grain lithologies have Sr (specific retention) >> SY (specific yield), where
n=3Sy+Sr

Neutron logs corrected with caliper data to provide a continuous
porosity measure (N-Pt) that is related to Pe and Sy

P; site lab P, BGS lab P, BGS lab S, BGS lab

mean SD mean SD mean SD mean SD

Sand dominant 0.31 £0.06 032 £0.08 026 £0.07 0.13 £0.07
Silt & sand-clay mixes 037 +0.08 038 +£0.11 032 +0.09 0.06 +0.04
Clay dominant 042 £0.07 044 £0.06 037 006 002 0.02
Halite dominant 027 014 029 ==0.10 nd nd 0.04 +0.02
0.5
60 - gravel sand silt clay
0.4 /
/ 50
> / —
a0 yd & a0 A
o "4 8 30 -
o]
0.1 o 20
0 { 10
0 01 0.2 0.3 0.4 0.5 Ty
SPECIFIC RETENTIO!
N-Pt T T T T T
100 10 | 01 0.01 0.001
— Pt —De Sy

Mean grain diameter (mm) Source: Orocobre, Lithium Americas
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Hydraulic conductivity, storativity

Halite units can have secondary porosity, with overall porosity decreasing
with depth due to halite compaction

Very high hydraulic conductivities and storativity

Clastic units (clay to sand) have much lower hydraulic conductivity and
storativity

Gypsum sands in Central Australian salt lakes, when wind blown and
uncemented, can have significant porosity and storage

Effective |Specific
Aquifer type Lithology Km/d |porosity%| yield% | Storativity [Source
Unconfined Halite 200-600 5-8 5.E-02 Rincon
Unconfined Halite 1000-6000| 31-40 3.E-01 Rincon
Fine clastics, some
Unconfined halite, sand 1-2 <10 0.02-0.2 Olaroz
Fine clastics, some
Confined sand 1-2 2-4 |1.0E-3 - 1.0E-4|Olaroz
Confined aquitard|Silt/Clay 0.15 2 6.E-06 Olaroz
Confined Sand 4 10-15 Rodinia

Source: Orocobre, Rodinia
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Brine sampling

Sampling of the brine is essential as the lithium is extracted
from the brine. Sampling methods include:

Bailer sampling during diamond or sonic drilling, when
casing is present

Pumping from specific intervals with packers, or from
screened intervals

Brine extraction from core samples, subsampling the
interior to prevent contamination from drilling brine

Brine near saturation — which presents a challenge

Analysed for Li, K, B, Ca, Mg, Na, Cl, SO4, HCO3, CO3 and
trace elements. Carbonate and bicarbonate low



Brine chemistry — low Mg/Li key

Salar de Hombre Salar de Salar de Salinas . Salar de Salar de .
. . Guayatayoc™ Cauchari® ) . ) Silver Peak
Atacama Muerto Rincon, Olaroz Grande~® Argentina  Argentina Cauchari Uyumni Nevada
Chile Argentina Argentina Argentina Argentina Argentina Bolivia
mean FMC Sentient Orocobre (LAC) CFC
Li 1.835 744 397 690 775 67 191 618 424 245
K 22.626 7.404 7.513 5,730 9,289 2,185 1.596 5,127 8.719 5.655
Mg 11,741 1.020 3.419 2270 2,117 115 453 1.770 7.872 352
Ca 379 636 494 460 1,450 628 569 401 557 213
B 783 420 331 1.050 232 144 244 1.360 242 85
Density 1.223 1.205 1.220 1211 1.211 1.297
MgTla 64 14 86 24 27 1.7 24 29 18.6 14

* mean values include all pit samples from nuclens and margns and are not necessanly representative of possible production values

Data for Salars de Atacama, Hombre Muerto. Rincon. and Uyuni as well as Silver peak. taken from “Evaluation of The Potential of Salar del
Rincon Brine Deposit as a Source of Lithium. Potash. Boron And Other Mineral Resources. by Pedro Pavlovic and Jorge Fowler, 2004. Salar de
Cuachari (LAC). from NI43-101, Lithium Americas Corporations. February 15 2010.

« Salar de Atacama is the “gold standard” salt lake, huge and high grade

« Uyuni is the true monster, but chemistry is less attractive for conventional
processing, as is the project location

« Silver Peak, Nevada is a long term operation

« Olaroz came on stream as a producer in 2015

« Rincon, Cauchari and Salinas Grandes are all potential new operations

Source: Orocobre
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Salt lake chemical zonation

Typical zonation with carbonates deposited around lake
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Density contrasts

Alluvial fans are developed around many salt lakes in
active tectonic environments

These have thick unsaturated zones away from the lakes
& host fresh to brackish water in equilibrium with the
lake brine

Evaporation from the surface of the lake balances inflows
from alluvial fans and river deltas entering the lake basins

A gyben-Herzberg density interface develops on the
margins of the lakes

Pumping from the lake sediments is likely to results in
changes to the lake hydrogeology and density gradients
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Density variation - theory

Salar Margin Inner Salar Zone Salar Margin
Lateral Maximum Maximum Lateral
Recharge: Evapotranspiration 1 mm/d Evapotranspiration 1 mm/d Recharge:
0 to 0.14 miyr {(Water table at surface) Minimum Evapotranspiration (Water table at surface) 010 0.14 r;w‘yr
(TDS 10 g/l) T 0 mm/d (Water table = 2m) TTT (TDS 10 gfl)
11111 aanasptptrn 111

o 500 1000 75him)
——

[ 0

Figure 9.14: Simulation results from the two-dimensional model
showing the natural steady-state configuration of the brine / fresh water interface; the
equilibrium configuration of the interface is a function of the balance between fresh water
inputs and evaporation / evapotranspiration outputs.

Dilution of brine by marginal less concentrated water is a groundwater
management issue

Source: Lithium Americas



How much brine is there?

Defining resources is a critical step in determining
whether a salt lake has potential for economic production

Drilling to determine how deep and what type of
sediments are present

Porosity and permeability testing of samples
Pump testing, to evaluate brine flows

Evaluation of brine chemistry — can you produce saleable
product

Evaporation and solar radiation measurements
Simulating brine extraction with a groundwater model



~ Extraction & borefield management
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- Groundwater modelling

Figure A2-7: PB-01 calibrated hydraulic conductivity distribution

« Unconfined to leaky confined layered
aquifers

« Complex model domains with faults —
how simplified can they be?

« Dual density fluid — how important is
density in these layered aquifers?

* Recharge volumes over the life of
extraction? -~

« What is the hydraulic connection with _proe
alluvial fans and deeper alluvial material Cyg =
around salars?

 Modelling required to define
conversion from resources to reserves
and to manage extraction
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Source: Lithium Americas e



Conclusions

Catchment lithology influences salt lake chemistry

Hydrology and water balance influence salt lake
development

Tectonics are important to produce deep basins, with
thick sediments

Brine chemistry is important for economic processing
Host sediments vary from true aquifers to aquitards
Resource definition requires adequate drilling, defining
the stratigraphy and applying appropriate porosities
Careful groundwater modelling of operating bore fields is
required to simulate the long term pumping effects
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Where to from here?

Stable isotope studies on brines and fresh to brackish
water in the groundwater system

Age dating of brine from different depths
Groundwater modelling of pumping scenarios

Hydrogeological model completion to define production
schedules and for prediction of drawdowns and to assist
groundwater and stakeholder management

Long term monitoring of bore networks
Further drilling to address data gaps
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